How many steps till I recover from a sudden lateral perturbation?

Patrick D. Holmes ${ }^{1}$, Xiao-Yu Fu ${ }^{1,2}$, Shannon M. Danforth ${ }^{1}$, Talia Y. Moore ${ }^{1}$, Ram Vasudevan ${ }^{1}$
${ }^{1}$ University of Michigan, ${ }^{2}$ University of Calgary

I. 1, 2, 3, 4, ... N-Step Stability

Goal: Compute the set of lateral perturbations from which a human can recover by taking N or fewer steps.
Characterizing human mediolateral stability could help:

- Diagnose high fall-risk individuals
- Improve prosthesis/exo design
- Guide rehabilitation
- Inform wearable robot control

II. A Sudden Lateral Perturbation

Experiment: motor-driven cables pulled subjects laterally during walking:

- Motion capture, split-belt treadmill
- Varying magnitude, direction, timing
- Several speed and step width conditions
- 12 subjects; 5 female, 7 male (only 1 subject analyzed here)

III. I Model Walking with an LIP

Experimental Data

- We model the lateral motion of the person's Center of Mass (COM). At time t, let

$$
x(t):=\text { lateral COM position, } \quad \dot{x}(t):=\text { lateral COM velocity }
$$

- A sample observed COM trajectory over the course of several steps is shown below:

Model: Linear Inverted Pendulum with Reset Map

- Single support is modeled as a Linear Inverted Pendulum (LIP) with a foot:

$$
\ddot{x}(t)=\frac{g}{z_{c}}(x(t)-\operatorname{COP}(t))
$$

where $\operatorname{COP}(t)$ is the location of the Center of Pressure at time t inside the foot

- Double support and foot placement are modeled using a linear reset map with uncertainty:

$$
\left[\begin{array}{l}
x\left(t^{+}\right) \\
\dot{x}\left(t^{+}\right)
\end{array}\right] \in\left\{A\left[\begin{array}{l}
x\left(t^{-}\right) \\
\dot{x}\left(t^{-}\right)
\end{array}\right]+b\right\}+E
$$

where A and b represent the linear map, t^{-}and t^{+}are the times of leading heel strike and trailing toe off, and E is a set bounding the error of the reset map.

- A simulation (w / o uncertainty) is shown below, where the step timing is given:

IV. A Basin Shows Stability

This is my Nominal State

- A target set X_{T} at heel strike (HS) represents nominal walking. - We form a Gaussian from all COM states at HS 3+ steps out from a perturbation.
- X_{T} overapproximates the 95% confidence ellipse of this Gaussian.

Reachability

Inspired by capturability-based analyses ${ }^{1}$, we find the backwards reachable set of X_{T} under our model's dynamics after N steps, which we refer to as N-step Stability Basins. We use a reachability toolbox called CORA ${ }^{2}$, assume that step timing is given, and incorporate uncertainty at the step transitions.

V. ...Predicts How Long I'll Need to Walk Again?

- We label each stance phase by the number of steps to recover (STR) until the COM state at HS is within X_{T}.
- The smallest Stability Basin fully containing a trajectory predicts the STR, illustrated below:

- The 0 -step Stability Basin accurately distinguishes between 0 vs. $1+$ STR

- However, the prediction accuracy of 1 vs 2 vs 3 vs $4+$ STR for perturbed trials is poor:

- Future work will focus on a more complex walking model that better models the dynamics of the $1+$ STR trials.

[^0]
[1] Koolen, T., de Boer, T., Rebula, J., Goswami, A., Pratt, J. (2012). Capturability-based analysis and control of legged locomotion, Part 1: Theory and application to three simple gait models. The International Journal of Robotics Research, 31(9), 1094-1113. [2] M. Althoff, D. Grebenyuk and N. Kochdumper. Implementation of Taylor Models in CORA 2018. In Proc. of the 5th International Workshop on Applied Verification for Continuous and Hybrid Systems, pages 145-173, 2018.

[^0]: Thanks to Art Kuo for helping to collect this data, and to Victor Shia for his advice.
 *This work is supported by the National Science Foundation, under CAREER Award 1751093 and Graduate Research Fellowship Program Grant No. 1256260 DGE.

